a2 United States Patent

Zuo et al.

US009471348B2

US 9,471,348 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

APPLYING POLICIES TO SCHEDULE
NETWORK BANDWIDTH AMONG VIRTUAL
MACHINES

(54)

(71) Applicant: MICROSOFT TECHNOLOGY
LICENSING, LLC, Remond, WA (US)
(72) Inventors: Yue Zuo, Redmond, WA (US); Hoyuen
Chau, Redmond, WA (US); Hoi Huu
Vo, Bellevue, WA (US); Samer N.
Arafeh, Sammamish, WA (US); Vivek
P. Divakara, Bothell, WA (US); Yimin
Deng, Sammamish, WA (US); Forrest
Curtis Foltz, Redmond, WA (US);
Vivek Bhanu, Bothell, WA (US)
(73) Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 65 days.
(21) Appl. No.: 13/932,952
(22) Filed: Jul. 1, 2013
(65) Prior Publication Data
US 2013/0298123 Al Nov. 7, 2013
Related U.S. Application Data
(63) Continuation of application No. 12/790,981, filed on
May 31, 2010, now Pat. No. 8,477,610.
(51) Imt. ClL
GO6F 9/455 (2006.01)
HO4L 29/06 (2006.01)
(Continued)
(52) US. CL
CPC ... GO6F 9/45533 (2013.01); HO4L 29/06523
(2013.01); HO4L 41/0896 (2013.01); HO4L
47/20 (2013.01); HO4L 47/215 (2013.01)
(58) Field of Classification Search

CPC ... GOG6F 9/45533; HO4L 29/06523;
HO4L 12/2439; HO4L 12/40065; HO04L

41/0896; HOAL 47/525; HOAL 47/783;

HOA4L 47/787

USPC ... 370/230, 235, 235.1, 237, 254-255,
370/395.4; 709/201, 225, 226, 248
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

7,436,844 B2
7,447,155 B2

10/2008 Wang et al.
11/2008 Tang

(Continued)
FOREIGN PATENT DOCUMENTS

CN 1663195 A
™ 200618543 Al

8/2005
6/2006

OTHER PUBLICATIONS

“First Office Action and Search Report Issued for Chinese Patent
Application No. 201180026749.8”, Mailed Date: Jan. 7, 2015, 12
Pages.

(Continued)

Primary Examiner — Warner Wong
(74) Attorney, Agent, or Firm — Ben Tabor; Kate Drakos;
Micky Minhas

(57) ABSTRACT

Computerized methods, systems, and computer-storage
media for allowing virtual machines (VMs) residing on a
common physical node to fairly share network bandwidth
are provided. Restrictions on resource consumption are
implemented to ameliorate stressing the network bandwidth
or adversely affecting the quality of service (QoS) guaran-
teed to tenants of the physical node. The restrictions
involves providing a scheduler that dynamically controls
networking bandwidth allocated to each of the VMs as a
function of QoS policies. These QoS policies are enforced
by controlling a volume of traffic being sent from the VMs.
Controlling traffic includes depositing tokens into token-
bucket queues assigned to the VMs, respectively. The tokens
are consumed as packets pass through the token-bucket
queues. Upon consumption, packets are held until sufficient
tokens are reloaded to the token-bucket queues.

14 Claims, 9 Drawing Sheets

DATA CENTER 225

02
<

200 7
et y

VIRTUAL
MACHINE

230

VIRTUAL
MACHINE

238

VIRTUAL
MACHINE

20 25

VIRTUAL
MACHINE

FIRST PHYSICAL NODE

SECOND PHYSICAL NODE

200 J

US 9,471,348 B2

Page 2
(51) Int. CL 2008/0008095 AL* 1/2008 GilfiX w.oovvooroorreroor 370/235
Ao4L 12124 (2006.01) SOIT013500 Al aoll Haoat ot e ot
cada et al. ...
HO4L 12/813 (2013.01) 2011/0213686 Al* 9/2011 Ferris of al. oo, 705/34
HO4L 12/819 (2013.01) 2011/0296052 AL* 122011 Guo et al. oo 709/240
2011/0296231 AL* 122011 Dake oo 714/4.2

(56)

8,495,633
8,516,137
8,705,351
8,782,137
2002/0101820
2006/0184349
2008/0002683
2008/0002733

References Cited

U.S. PATENT DOCUMENTS

B2 *
B2 *
BL*
B2 *
Al

Al*
Al*
Al*

7/2013
8/2013
4/2014
7/2014
8/2002
8/2006
1/2008
1/2008

Easton et al.ccoevve. 718/1
Calder et al. 709/229
McGlaughlin et al. 370/230
Jung et al. ..o 709/204
Gupta et al.

Goud et al. ...ccccevvvrnnen 703/24
Droux et al. ... 370/389
Sutskover ..o 370/436

OTHER PUBLICATIONS

“Second Office Action and Search Report Issued in Chinese Patent
Application No. 201180026749.8”, Mailed Date: Jun. 26, 2015, 11
Pages.

Office Action and Search Report Issued in Taiwan Patent Applica-
tion No. 100112856, Mailed Date: Sep. 2, 2015, 13 Pages.

* cited by examiner

US 9,471,348 B2

Sheet 1 of 9

Oct. 18, 2016

U.S. Patent

zzl N

T O

A1ddNS 43MOd

0zl N\

oLl

\oor

S1ININOINOD O/l

gL\

(8)140d o1

L7911
(S)LNINOJWOD
NOILYINISIHd

L L)
(S)H40SSAD0Hd

Lz

AHOWANW

US 9,471,348 B2

Sheet 2 of 9

Oct. 18, 2016

U.S. Patent

00¢
vj

‘¢ DI

JAON TVOISAHd ANOD3S

JAON TVOISAHd 1SdlId

| |
| |
| |
| |
|
|| o sz || O
| |
ANIHOVI | || INIHOVIN ANIHOVI | | | INIHOVI
WYALHIA | 1] TYNLYIA WYNLAIA | 1] IVNLAHIA
L e > | A
AN . 062 AN /7
202 102
Gag’ G662

d3T7T041LNOD
Oldgv4

¢¢ Jd31N3D vivd

US 9,471,348 B2

Sheet 3 of 9

Oct. 18, 2016

U.S. Patent

00z~

|

|

|

|

|

i

! Sl¢ ININOJINOD WHOMLAN
! ANIHOVIN L ZISETINEN szt~ 3IvANd
! TIVNLYIA wyomean | N

| ™ 3SI4dYIINT
“ oL’ &

|

" 02 ale

| ANIHOVIN —» 3N3NO DIN 304N0S3A
_ TVNLYHIA 91

| oze”’ Gle oge”

! 3AON TVIISAHd ANOD3S

_ 5z

! YILINTD V1va

|| sz’

! WHO41v1d ONILNdINOD aNO19

|

|

|

|

|

|

|

|

|

HHJOMLAN TVIISAH

US 9,471,348 B2

Sheet 4 of 9

Oct. 18, 2016

U.S. Patent

v OId

d371NAa3HOS

13XMONG-NIHOL

13IXONG-NIHOL

IN3ND DIN
A
JNIND DIN
; ; \
7 [
R @ Y @ Y
9z T2 96z TeZ
JIN3IN0O IN3No JIN3IND IN3N0O

13XMONgG-NIMOL

7 i 1
! LNANOJWOD ONILNOY / |
/
I-"-F-""-"~ -~ -~ -~ -~ -~ ~-"~-"="7""""="7="""="f~-~""=—""== 1
_ |
— | — —_— —_—
2 i 0z Sez | 0Ez
ANIHOVA | 1 | 3NIHOVW ANIHOYW | | | 3NIHOVW
wnLHA || Tvnida WnLHA |)| YN
| |

j
00¥

US 9,471,348 B2

Sheet 5 of 9

Oct. 18, 2016

U.S. Patent

S OIHd

0¢E
3InN3ano o_z
oIz TIZ 9tz [X94
3N3NO EENL 3N3No 3IN3ano
LIMONG-NINOL Ev_o:m NIMOLL |1aMong-NadMoL| |13Mong-NIMOL
LA N g \v/| \\\\\ >4
T | - \ |
| 5% \ _
| INANOJNOD ONILNOY _
L0V i
o T T T T T T
| |
(VX4 | 0/¢ [S5%4 _ 0¢¢
INIHOVIN || InHovK ANIHOVI | ! INIHOVIA
IVALHIA 1| vnLHin VNLAIA | IVNLHIA
_| ||||||||||||||||||||| |
0627
300N TVDISAHd
00t~

US 9,471,348 B2

Sheet 6 of 9

Oct. 18, 2016

U.S. Patent

9 Ol

LOY

0ce

3IN3ND OIN

%

o

9/¢ T7¢ [*1%4 X4
IN3No anano an3ano InNano
1IONG-NDMOL Y §130Ng-NIMOLY [1IMONG-NIXMOL| |LIHONG-NIMOL
» - . N s—— » 4
—ZT -~ - . _
oLy ,_ “
LNINOJINOD ONILNOY |
T T T T T T T T T T T T
| |
(V¥4 “ 0/¢ [“ 0¢¢
ANIHOVIN 'l INIHOVIA ANIHOVW | ! ANIHOVIN
IVNLHIA 1] TvNLHIA WNLHIA | IVNLHIA
| |
0627

JAON TVOISAHd

00t~

US 9,471,348 B2

Sheet 7 of 9

Oct. 18, 2016

U.S. Patent

0LE~

1ININOdJNOD
JOV4H3LNI
MHJOMLAN

Q

ocz”

JAON TVIISAHd

T
e e e 2L
I e e e ~-e2.
b4
Rl I e e e e e ~-z2.
v[INaNOdWoO ININOINOD
N3XOL EE) ~12.
Tov 0s2” orZanano Oez”’
¥3INAIHOS 13¥0Ng-NINOL
% O
ANIHOVIN TYNLYIA

2 O

00¥

US 9,471,348 B2

Sheet 8 of 9

Oct. 18, 2016

U.S. Patent

8 Ol

0¥8~

3NIND LIMONG-NIMOL IHL NI ONINIVINTS
SN3IXOL d311SOd3d FHL 40 NOILHOd V ANV
S310170d SOD 3IHL NO ‘1¥vd NI ‘a3sva IN3INO
13X0NG-NIMOL IHL OLNI SNIMOL AvOo13d

A

0€8~

ANIHOVIN TVNLAIA FHL WOdd S13X0vd 40 31vd
MOT4 ¥ 40 NOILONNA ¥ SV ININD 13XM0Nd
“N3XOL FHL WOHd4 NMVYHAHLIM 39V SNaMOL
a311S0Od3d FHL 40 NOILHOd V¥ F4IHM ‘TNIND
13X0Ng-NIXOL FHL WOd4 SNIXOL d311SOd3d
JHL 40 NOI131d3d ¥V NO d3Svd 31V1S
JAILOV NV NI SI INIHOVIA TVNLHIA 3HL 103130

A

028~

JAON
TVYOISAHd FHL NO A3LVILNVLSNI INIHOVIA
IVNLYIA ¥V OL dINDISSY SI 3N3ND 13MONg
-NIMOL FHL FHIHM ‘LOVHLINOD LNIITD IHL 40
S31D2170d SO0 IHL NO ‘Ldvd NI ‘d3svgd ININO
13XONG-NIMOL ¥V OLNI SNIMOL 11SOd3d

A

018~

INTITD OL SIDHNOSAH ¥HOMLIAN

40 NOILYDOTIVY SNHIA0D 1OVHINOD

IHL FYTIHM ‘LOVHLINOD V OL NILLIMM
S312170d (SOD) SADIAYAS 40 ALITYND LOILSNI

008

US 9,471,348 B2

Sheet 9 of 9

Oct. 18, 2016

U.S. Patent

006

6 DIA

096~

YT TINATHIS
UL WO¥d SNTYMOL 10
LISOddAa ANODES V DNLLdIDOV
ANANO ILIDNG-NTIOL FHL
NOdN INANOJNOD TIVIIALLNI
MNHOMLAN AHL OL SLAMNOVd
TINANONT FHL QIVMI0I

A

066~

4NdN0 LaMiNd
-NIYOL JHL WO¥I a9.191d9d
ATIVILNVISENS ONIII
SNAMOL dH.L OL LNANOASENS
QHATHOHEY ¥V LVHL MO Td VIVA

AHL NTHLIAM SLAMOVd dNdNONT

A

016 ~

ANANO ITDNG-NTIOL V WO
Qd131d9Aa ATIVILNVY.LSENS
ONIZL SNTSOL dHL OL
FONId AIATIDTT 99V ILVHL MOTA
VIVA UL NIHLIM SIT0Vd
INANQOdWOD A0V AYALNI
SMOMIAN V OL QIVAMI0L

0€6 ~

SNAXMOL
dHL ONILITddd ATTVIINVYLSENS
NOdN HIVI MOTA-VLIVA
HHL JdLINW ATIVOINVNAQ

A

026~

ANIHOVIAU TV LYUIA
L1OFrdNS FHL WOdd MOT4d VLVd
HHL 40 HLVYd V OL ONITIOIDV
SNAYMOL HHL HNASNOD

A

016~

YHTINAIHOS V WO SNIXMOL
J0O LISOddd LSYId V LddDDV

US 9,471,348 B2

1
APPLYING POLICIES TO SCHEDULE
NETWORK BANDWIDTH AMONG VIRTUAL
MACHINES

CROSS REFERENCE TO RELATED
APPLICATIONS

This application is a continuation of, and claims priority
from, U.S. patent application Ser. No. 12/790,981, filed May
31, 2010, entitled “APPLYING POLICIES TO SCHEDULE
NETWORK BANDWIDTH AMONG VIRTUAL
MACHINES,” which is incorporated herein by reference in
its entirety.

BACKGROUND

Large-scale networked systems are commonplace plat-
forms employed in a variety of settings for running appli-
cations and maintaining data for business and operational
functions. For instance, a data center (e.g., physical cloud
computing infrastructure) may provide a variety of services
(e.g., web applications, email services, search engine ser-
vices, etc.) for a plurality of customers simultaneously.
These large-scale networked systems typically include a
large number of resources distributed throughout the data
center, in which each resource resembles a physical machine
or a virtual machine (VM) running on a physical node or
host. When the data center hosts multiple tenants (e.g.,
customer programs), these resources are optimally allocated
from the same data center to the different tenants.

Often, multiple VMs will concurrently run on the same
physical node within a computing network, or the data
center. These VMs that share a common physical node may
be allocated to the different tenants and may require different
amounts of resources at a various times. For instance, there
is typically only one network card installed to a physical
node, where the network card has a limited amount of
network bandwidth. When one tenant requires a high
amount of resources to accomplish a particular task, one of
the tenant’s VMs running on the physical node can poten-
tially stress the network card by sending a large amount of
packets thereover, preventing other VMs running on the
physical node from fairly sharing the resources thereof.

Accordingly, because optimal allocation of processing
capabilities within a data center often involves placing a
plurality of VMs on a single physical node, and because
these VMs require resources (e.g., network bandwidth) to
carry out most operations, a mechanism that allows the VMs
on the same physical node to share the network bandwidth
fairly, by placing restrictions on resource consumption,
would help reduce stressing available resources and would
help maintain a high quality of service provided to the
tenants of the data center.

SUMMARY

This Summary is provided to introduce concepts in a
simplified form that are further described below in the
Detailed Description. This Summary is not intended to
identify key features or essential features of the claimed
subject matter, nor is it intended to be used as an aid in
determining the scope of the claimed subject matter.

Embodiments of the present invention provide a mecha-
nism that allows the virtual machines (VMs) residing on a
common physical node to fairly share the resources (e.g.,
network bandwidth) provided by the physical node. Typi-
cally, fairly sharing resources involves placing restrictions

10

15

20

25

30

35

40

45

50

55

60

65

2

on resource consumption to ameliorate stressing the network
bandwidth or adversely affecting the quality of service that
is guaranteed to tenants of the data center in which the VMs
reside.

In an exemplary embodiment, the placement of restric-
tions may involve providing a management utility (e.g.,
scheduler 401 of FIGS. 5-7) that dynamically controls VM
experiences by allocating the networking bandwidth to each
of'the VMs on a shared physical machine as a function of a
policy. In other words, the management utility may grant a
physical machine owner, or a tenant of the data center, the
ability to configure the policies that control the VMs usage
of network bandwidth. Beyond serving as an interface that
accepts policies being dictated by one or more entities, the
management utility may enforce these policies so that the
VMs are provided with a certain quality of service (e.g., a
minimum/maximum network bandwidth guaranteed for
each VM).

In one instance of enforcing these policies, the manage-
ment utility may employ rate limiting techniques that are
used to control a volume of traffic being sent from the VMs.
By way of example, one rate limiting technique may instruct
that data packets be freely conveyed from a VM to a network
when a rate of data flow from the VM is consuming less
resources than currently allocated to the VM. Generally, the
allocated resources are specified by the policies associated
with the VM. Another rate limiting technique may instruct
that data packets be dropped or delayed when the VM is
attempting to utilize more resources than currently allocated
thereto.

As more fully described below, a set of token-bucket
queues and a scheduler may be implemented on the physical
node to carry out these rate limiting techniques. Carrying out
the rate limiting techniques may initially involve the sched-
uler inspecting one or more quality of service (QoS) policies
written to a contract, where the contract governs allocation
of network resources to a client or tenant of a data center.
Next, the scheduler may deposit tokens into a token-bucket
queue based, in part, on the QoS policies of the client
contract. As described herein, the token-bucket queue is
assigned to a VM instantiated on the physical node that is
shared by other VMs.

The scheduler may then inspect the token-bucket queue to
ascertain a state of the VM. For instance, when the deposited
tokens are not depleted from the token-bucket queue, the
schedule may detect that the VM is in an idle state. In
contrast, the scheduler may detect that the VM is in an active
state based on a depletion of the deposited tokens from the
token-bucket queue, as portion of the deposited tokens are
withdrawn from the token-bucket queue as a function of a
rate of the data flow from the VM. In this instance, the
scheduler may reload tokens into the token-bucket queue
based on the QoS policies and on a portion of the deposited
tokens remaining in the token-bucket queue. As such, the
allocation of network bandwidth using the scheduler in
conjunction with the token-bucket queues maintains fairness
amongst the VMs while maximizing throughput on the
physical node.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention are described in
detail below with reference to the attached drawing figures,
wherein:

FIG. 1 is a block diagram of an exemplary computing
environment suitable for use in implementing embodiments
of the present invention;

US 9,471,348 B2

3

FIG. 2 is a block diagram illustrating an exemplary cloud
computing platform, suitable for use in implementing
embodiments of the present invention, that is configured to
allocate bandwidth within a physical node of a data center;

FIG. 3 is block diagram of an exemplary distributed
computing environment depicting components within a
physical node communicating to an external endpoint, in
accordance with an embodiment of the present invention;

FIGS. 4-6 are block diagrams depicting various data flows
between virtual machines (VMs) and corresponding token-
bucket queues residing on a single physical node, in accor-
dance with an embodiment of the present invention;

FIG. 7 is a block diagram of a token-bucket queue that is
metering a data flow based on tokens deposited therein, in
accordance with embodiments of the present invention;

FIG. 8 is a flow diagram showing an exemplary method
for metering various data flows of packets originating from
a plurality of VMs instantiated on the single physical node,
in accordance with an embodiment of the present invention;
and

FIG. 9 is a flow diagram showing an exemplary method
for imposing a limit on a rate of data flowing from a subject
VM, in accordance with an embodiment of the present
invention.

DETAILED DESCRIPTION

The subject matter of embodiments of the present inven-
tion is described with specificity herein to meet statutory
requirements. However, the description itself is not intended
to limit the scope of this patent. Rather, the inventors have
contemplated that the claimed subject matter might also be
embodied in other ways, to include different steps or com-
binations of steps similar to the ones described in this
document, in conjunction with other present or future tech-
nologies. Moreover, although the terms “step” and/or
“block™ may be used herein to connote different elements of
methods employed, the terms should not be interpreted as
implying any particular order among or between various
steps herein disclosed unless and except when the order of
individual steps is explicitly described.

Embodiments of the present invention relate to methods,
computer systems, and computer-readable media for apply-
ing a throttle to a source (e.g., virtual machines (VMs)
instantiated on a physical node) of packets, as opposed to
controlling traffic at network edges. The applied throttle
may, in operation, meter data flows from the VMs according
to contracts associated with each. In an exemplary embodi-
ment, metering involves delaying delivery of those packets
that exceed one or more policies articulated by the contracts.
By way of example, metering may be implemented by
token-bucket queues that temporarily store, or “enqueue,”
the delayed packets. Typically, the token-bucket queues act
as first-in first-out (FIFO) buffers that hold the delayed
packets until network bandwidth is allocated to the VMs that
originated the delayed packets. Upon allocation of sufficient
network bandwidth, the token-bucket queues are designed to
release the delayed packets to be delivered to their intended
destination.

In one aspect, embodiments of the present invention relate
to one or more computer-readable media having computer-
executable instructions embodied thereon that, when
executed, perform a method for metering various data flows
of packets originating from a plurality of VMs instantiated
on the single physical node. Initially, the method includes
the step of inspecting one or more quality of service (QoS)
policies written to a contract. Typically, the contract governs

10

15

20

25

30

35

40

45

50

55

60

65

4

allocation of network resources to a client. Next, tokens may
be deposited into a token-bucket queue based, in part, on the
one or more QoS policies of the client contract. As shown in
FIGS. 4-6, the token-bucket queue is assigned to the VM
instantiated on the physical node. The VM may be identified
as having assumed an active state based on a depletion of the
deposited tokens from the token-bucket queue. (When in the
active state, a portion of the deposited tokens are withdrawn
from the token-bucket queue as a function of a rate of the
data flow from the VM.) The method may further include the
step of reloading tokens into the token-bucket queue based,
in part, on (a) the QoS policies and/or (b) a portion of the
deposited tokens remaining in the token-bucket queue.

In another aspect, embodiments of the present invention
relate to a computer system capable of metering a rate at
which packets from a VM are injected into a network
utilizing one or more policies specified by tenants of a data
center. The computer system includes a computer storage
medium that has computer software components embodied
thereon. The computer software components include the
following: a first VM, a second VM, a first token-bucket
queue, a second token-bucket queue, and a scheduler. The
first and second VMs are instantiated on the same physical
node. The first token-bucket queue is assigned to the first
VM, while the second token-bucket queue is assigned to the
second VM. As used herein, the first token-bucket queue and
the second token-bucket queue generally represent distinct
memory buffers located on the physical node.

The scheduler is configured to read a first-client contract
and a second-client contract associated with the first VM and
the second VM, respectively. The scheduler is further able to
deposit a first amount of tokens into the first token-bucket
queue as a function of policies written to the first-client
contract. Similarly, the scheduler may deposit a second
amount of tokens into the second token-bucket queue as a
function of the policies within the second-client contract. As
used herein, the first amount of tokens and the second
amount of tokens each generally represent a portion of
network bandwidth that is allocated to the first VM and the
second VM, respectively. Often, the first amount and the
second amount of tokens differ in value based on a discrep-
ancy in network bandwidth allocation between the first and
second VM.

In yet another aspect, embodiments of the present inven-
tion relate to a computerized method for imposing a limit on
a rate of data flowing from a subject VM. In one embodi-
ment, the method involves accepting a first deposit of tokens
from a scheduler. Typically, an amount of tokens provided
within the first deposit is based on, at least one of, the
following: tokens currently maintained within a token-
bucket queue, network bandwidth allocated to the subject
VM associated with the token-bucket queue, or network
bandwidth allocated to other VMs located on a common
physical node as the subject VM.

The method may further involve the steps of consuming
the tokens according to a rate of the data flow from the
subject VM, and dynamically metering the data-flow rate
upon substantially depleting the tokens. In instances of the
present invention, the process of metering may include
either forwarding to a network interface component packets
within the data flow that are received prior to the tokens
being substantially depleted from the token-bucket queue, or
enqueueing packets within the data flow that are received
subsequent to the tokens being substantially depleted from
the token-bucket queue. Upon the token-bucket queue
accepting a second deposit of tokens from the scheduler, the
enqueued packets may be forwarded to the network interface

US 9,471,348 B2

5

component, assuming that the tokens within the second
deposit is adequate in amount to distribute the packets held
by the token-bucket queue.

Having briefly described an overview of embodiments of
the present invention, an exemplary operating environment
suitable for implementing embodiments of the present
invention is described below. In particular, an exemplary
operating environment supports functionality of a mecha-
nism that allows VMs residing on a common physical node
to fairly share network bandwidth by placing restrictions on
resource consumption; thus, ameliorating overly depleting
the network bandwidth or adversely affecting the quality of
service that is guaranteed to the VMs via service contracts.

Referring to the drawings in general, and initially to FIG.
1 in particular, an exemplary operating environment for
implementing embodiments of the present invention is
shown and designated generally as computing device 100.
Computing device 100 is but one example of a suitable
computing environment and is not intended to suggest any
limitation as to the scope of use or functionality of embodi-
ments of the present invention. Neither should the comput-
ing environment 100 be interpreted as having any depen-
dency or requirement relating to any one or combination of
components illustrated.

Embodiments of the present invention may be described
in the general context of computer code or machine-useable
instructions, including computer-executable instructions
such as program components, being executed by a computer
or other machine, such as a personal data assistant or other
handheld device. Generally, program components including
routines, programs, objects, components, data structures,
and the like refer to code that performs particular tasks, or
implements particular abstract data types. Embodiments of
the present invention may be practiced in a variety of system
configurations, including handheld devices, consumer elec-
tronics, general-purpose computers, specialty computing
devices, etc. Embodiments of the invention may also be
practiced in distributed computing environments where
tasks are performed by remote-processing devices that are
linked through a communications network.

With continued reference to FIG. 1, computing device 100
includes a bus 110 that directly or indirectly couples the
following devices: memory 112, one or more processors
114, one or more presentation components 116, input/output
(I/O) ports 118, I/O components 120, and an illustrative
power supply 122. Bus 110 represents what may be one or
more busses (such as an address bus, data bus, or combi-
nation thereof). Although the various blocks of FIG. 1 are
shown with lines for the sake of clarity, in reality, delineating
various components is not so clear, and metaphorically, the
lines would more accurately be grey and fuzzy. For example,
one may consider a presentation component such as a
display device to be an /O component. Also, processors
have memory. The inventors hereof recognize that such is
the nature of the art and reiterate that the diagram of FIG. 1
is merely illustrative of an exemplary computing device that
can be used in connection with one or more embodiments of
the present invention. Distinction is not made between such
categories as “workstation,” “server,” “laptop,” “handheld
device,” etc., as all are contemplated within the scope of
FIG. 1 and reference to “computer” or “computing device.”

Computing device 100 typically includes a variety of
computer-readable media. By way of example, and not
limitation, computer-readable media may comprise Random
Access Memory (RAM); Read Only Memory (ROM); Elec-
tronically Erasable Programmable Read Only Memory (EE-
PROM); flash memory or other memory technologies;

25

35

40

45

50

55

60

65

6

CDROM, digital versatile disks (DVDs) or other optical or
holographic media; magnetic cassettes, magnetic tape, mag-
netic disk storage or other magnetic storage devices, or any
other medium that can be used to encode desired informa-
tion and be accessed by computing device 100.

Memory 112 includes computer storage media in the form
of volatile and/or nonvolatile memory. The memory may be
removable, nonremovable, or a combination thereof. Exem-
plary hardware devices include solid-state memory, hard
drives, optical-disc drives, etc. Computing device 100
includes one or more processors that read data from various
entities such as memory 112 or I/O components 120. Pre-
sentation component(s) 116 present data indications to a user
or other device. Exemplary presentation components include
a display device, speaker, printing component, vibrating
component, etc. 1[/O ports 118 allow computing device 100
to be logically coupled to other devices including I/O
components 120, some of which may be built-in. Illustrative
components include a microphone, joystick, game pad,
satellite dish, scanner, printer, wireless device, etc.

With reference to FIGS. 1 and 2, a first physical node 255
and/or second physical node 265 may be implemented by
the exemplary computing device 100 of FIG. 1. Further, one
or more of the virtual machines 230, 235, 270, and/or 275
may include portions of the memory 112 of FIG. 1 and/or
portions of the processors 114 of FIG. 1. Similarly, the
token-bucket queues 231, 236, 271, and/or 276 of FIGS. 4-6
may include portions of the memory 112 of FIG. 1 and/or
portions of the processors 114 of FIG. 1

Turning now to FIG. 2, a block diagram is illustrated, in
accordance with an embodiment of the present invention,
showing an exemplary cloud computing platform 200 that is
configured to allocate network bandwidth to the virtual
machines 230, 235, 270 and 275 within a data center 225 for
use by various service applications. By way of example,
service application 290 includes virtual machines 235 and
270 that are instantiated on physical nodes 255 and 256,
respectively, to support functionality of the service applica-
tion 290. It will be understood and appreciated that the cloud
computing platform 200 shown in FIG. 2 is merely an
example of one suitable computing system environment and
is not intended to suggest any limitation as to the scope of
use or functionality of embodiments of the present inven-
tion. For instance, the cloud computing platform 200 may be
a public cloud, a private cloud, or a dedicated cloud. Neither
should the cloud computing platform 200 be interpreted as
having any dependency or requirement related to any single
component or combination of components illustrated
therein. Further, although the various blocks of FIG. 2 are
shown with lines for the sake of clarity, in reality, delineating
various components is not so clear, and metaphorically, the
lines would more accurately be grey and fuzzy. In addition,
any number of physical machines, virtual machines, data
centers, endpoints, or combinations thereof may be
employed to achieve the desired functionality within the
scope of embodiments of the present invention.

The cloud computing platform 200 includes the data
center 225 configured to host and support operation of the
virtual machines 230, 235, 270, and 275, or endpoints, of
service applications (e.g., service application 290) owned by
tenants/customers of the data center 225. The phrase “ser-
vice application,” as used herein, broadly refers to any
software, or portions of software, that runs on top of, or
accesses storage locations within, the data center 225. In one
embodiment, one or more of the virtual machines 230, 235,
270, and 275 may represent the portions of software, com-
ponent programs, or instances of roles that participate in the

US 9,471,348 B2

7

service application. In another embodiment, one or more of
the virtual machines 230, 235, 270, and 275 may represent
stored data that is accessible to a service application. It will
be understood and appreciated that the virtual machines 230,
235, 270, and 275 shown in FIG. 2 are merely an example
of suitable parts to support a service application and are not
intended to suggest any limitation as to the scope of use or
functionality of embodiments of the present invention.

Generally, virtual machines 230, 235, 270, and 275 are
instantiated and designated to a service application based on
demands (e.g., amount of processing load) placed on the
service application. As used herein, the phrase “virtual
machine” is not meant to be limiting, and may refer to any
software, application, operating system, or program that is
executed by a processing unit to underlie the functionality of
the service application. Further, the virtual machines 230,
235, 270, and 275 may include processing capacity, storage
locations, and other assets within the data center 225 to
properly support the service applications.

In operation, the virtual machines 230, 235, 270, and 275
are dynamically allocated resources (e.g., network band-
width of a network interface card) of the physical nodes 255
and 265 to satisty a current processing load while meeting
QoS policies 211 and 221 of client contracts. In one instance,
a fabric controller 210 is responsible for automatically
pushing down these QoS policies 211 and 221 to schedulers
201 and 202, respectively. By way of example, the fabric
controller 210 may rely on a service model (e.g., designed
by a customer that owns the service application) to provide
guidance on how and when to allocate resources, such as
processing capacity, to the virtual machines 230, 235, 270,
and 275. In another example, the fabric controller 210 may
be configured to parse service-level agreements (SLAs) to
identify which guarantees are provided to which customers
and to which components running the customer’s service
application. These guarantees may be delivered to the sched-
ulers 201 and 202 in the form of the QoS policies 211 and
221. In operation, the schedulers 201 and 202 enforce the
QoS policies 211 and 221 via the token-bucket queues
(discussed below).

As used herein, the term “scheduler” is not meant to be
limiting, but may encompass any mechanism that promotes
network-bandwidth management by receiving instructions
from a centralized utility (e.g., fabric controller 210) and
enforcing QoS policies within the instructions. In an exem-
plary embodiment, the schedulers 201 and 202 may monitor
data flows originating from each of the VMs on the physical
nodes 255 and 265, and compare the data flows against the
QoS policies to arrive upon an appropriate amount of
network bandwidth to allocate to the virtual machines 230,
235, 270, and 275. In the field of computer networking (e.g.,
packet-switched telecommunication networks), the traffic
engineering phrase “QoS policies” refers to a blueprint for
implementing resource reservation and distribution amongst
VMs. Generally, “quality of service” (QoS) refers to the
ability to provide different priority to different service appli-
cations, components of applications (e.g., VMs), users, or
data flows, in order to guarantee a certain level of perfor-
mance thereto. For example, a fixed bit rate may be guar-
anteed for a particular VM in a particular context. As such,
the guarantees of the QoS policies 211 and 221 are advan-
tageously utilized as guidelines for scheduling resources to
users, who share the same network resources within a
limited-capacity physical node.

As discussed above, one or more VMs may be dynami-
cally allocated resources within the first physical node 255
and the second physical node 265. Per embodiments of the

30

35

40

45

8

present invention, the physical nodes 255 and 265 may
represent any form of computing devices, such as, for
example, a personal computer, a desktop computer, a laptop
computer, a mobile device, a consumer electronic device,
server(s), the computing device 100 of FIG. 1, and the like.
In one instance, the physical nodes 255 and 265 host and
support the operations of the virtual machines 230, 235, 270,
and 275, respectively, while simultaneously hosting other
virtual machines (not shown) carved out for supporting other
tenants of the data center 225, where the tenants include
endpoints of other service applications owned by different
customers.

In one aspect, the VMs operate within the context of the
cloud computing platform 200 and, accordingly, may com-
municate internally within a physical node, communicate
across physical nodes 255 and 265 through connections
dynamically made that traverse the data center 225, and
externally through a physical network topology to resources
of a remote network (e.g., in FIG. 3 resource 375 of the
enterprise private network 325). The connections may
involve interconnecting the VMs distributed across physical
resources of the data center 225 via a network cloud (not
shown). The network cloud interconnects these resources
such that one VM may recognize a location of another VM
in order to establish a communication therebetween. For
instance, the network cloud may establish this communica-
tion over channels connecting the VMs 235 and 270 of the
service application 290. By way of example, the channels
may include, without limitation, one or more local area
networks (LLANs) and/or wide area networks (WANs). Such
networking environments are commonplace in offices, enter-
prise-wide computer networks, intranets, and the Internet.
Accordingly, the network is not further described herein.

Turning now to FIG. 3, block diagram illustrating an
exemplary distributed computing environment 300 with two
VMs 270 and 275 established therein is shown in accor-
dance with an embodiment of the present invention. Initially,
the distributed computing environment 300 includes a
physical network 380 that includes an enterprise private
network 325 and the cloud computing platform 200, as
discussed with reference to FIG. 2. As used herein, the
phrase “physical network™ is not meant to be limiting, but
may encompass tangible mechanisms and equipment (e.g.,
fiber lines, circuit boxes, switches, antennas, IP routers, and
the like), as well as intangible communications and carrier
waves, that facilitate communication between endpoints at
geographically remote locations. By way of example, the
physical network 380 may include any wired or wireless
technology utilized within the Internet, or available for
promoting communication between disparate networks.

Generally, customers of the data center 255 often require
service applications running on resources therein to interact
with the software being run at another location, such as the
private enterprise network 325. As used herein, the phrase
“private enterprise network™ generally refers to a server
managed by a customer, or client of the cloud computing
platform 200, that is geographically remote from the data
center 225. In the embodiment illustrated in FIG. 3, the
enterprise private network 325 includes resources, such as
resource 330, that are managed by the client of the cloud
computing platform 200. Often, these resources host and
support operations of components of the service application
owned by the customer.

As depicted by reference numeral 315, a network is
established within the physical network 380. Typically, the
network 315 is established to transport packets between
endpoints. By way of example, the network 315 acts to

US 9,471,348 B2

9

convey packets 316 between the VMs 270 and 275 instan-
tiated on the second physical node 255 and the resource 330.
In operation, both the VMs 270 and 275 may originate data
flows that include packets. These data flows may be inter-
cepted by a network interface controller (NIC) queue that
meters a first data flow from the virtual machine 270 in
conjunction with a second data flow from the virtual
machine 275. Generally, the NIC queue 320 functions as an
internal filter, which controllably forwards the packets of the
first and second data flows to a network interface component
310.

Upon passing the metered data flow to the network
interface component 310, which may be configured as a
network adapter or network interface card, the network
interface component 310 releases the packets 316 of the data
flows into the network 315. Stated differently, the network
interface component 310 receives the metered first data flow
and the metered second data flow from the NIC queue 320
and releases from the second physical node 255 a controlled
volume of traffic comprising the packets 316 within the
metered first and second data flows. In other embodiments
(not shown), virtualized implementations of the network
interface controller (VNICs) may be set up within the virtual
machines 270 and 275 themselves to self-regulate a rate of
outgoing packets.

As mentioned above, the network 315 is limited by its
available network bandwidth while the second physical node
255 is configured with a particular amount of resources (e.g.,
limited processing capacity of the network interface com-
ponent 310). Accordingly, if no additional mechanisms to
fairly distribute the network bandwidth and/or resources are
put in place, the VMs 270 and 275 may compete for the
network bandwidth and/or resources without consideration
of predefined QoS policies. For instance, once a connection
over the network 315 is established, the virtual machine 270
may attempt consume all the network bandwidth indepen-
dent of other usage, thus, degrading performance of the
virtual machine 275, which is also attempting to send
packet(s) to an endpoint. As such, exemplary embodiments
of the present invention introduce token-bucket queues
assigned to each VM that meter a rate at which packets from
the VMs are injected into the network 315 utilizing the QoS
policies specified by tenants of the data center 225. These
token-bucket queues are described immediately below with
reference to FIGS. 4-7.

Typically, the resource 330 and the data center 225
include, or are linked to, some form of a computing unit
(e.g., central processing unit, microprocessor, etc.) to sup-
port operations of the VM(s) 270 and 275, and/or
component(s), running thereon. As utilized herein, the
phrase “computing unit” generally refers to a dedicated
computing device with processing power and storage
memory, which supports one or more operating systems or
other underlying software. In one instance, the computing
unit is configured with tangible hardware elements, or
machines, that are integral, or operably coupled, to the
resource 330 and the data center 225 to enable each device
to perform a variety of processes and operations. In another
instance, the computing unit may encompass a processor
(not shown) coupled to the computer-readable medium
accommodated by each of the resource 330 and the data
center 225. Generally, the computer-readable medium
stores, at least temporarily, a plurality of computer software
components (e.g., the VMs 270 and 275) that are executable
by the processor. As utilized herein, the term “processor” is
not meant to be limiting and may encompass any elements
of the computing unit that act in a computational capacity.

20

25

40

45

10

In such capacity, the processor may be configured as a
tangible article that processes instructions. In an exemplary
embodiment, processing may involve fetching, decoding/
interpreting, executing, and writing back instructions.

Turning now to FIG. 4, a block diagram is shown depict-
ing various data flows between VMs 230, 235, 270, and 275
and corresponding token-bucket queues 231, 236, 271, and
276, respectively, in accordance with an embodiment of the
present invention. Initially, this plurality of VMs each reside
on a single physical node 400. Accordingly, the VMs 230,
235, 270, and 275 are obliged to fairly share network
resources, such as a network link/connection or the band-
width provisioned thereto.

A routing component 410 is provided that knows a
mapping between the VMs 230, 235, 270, and 275 and their
assigned token-bucket queues 231, 236, 271, and 276,
respectively. In operation the routing component 410 is
configured to access the mapping upon detecting one or
more VMs attempting to transmit a data flow to an endpoint
external to the physical node 400, and to route the data flow
to the one or more token-bucket queues based on the
mapping. By way of example, the routing component 410
may capture a data flow, identity a source of the data flow
as the virtual machine 230, and utilize the mapping to the
determine that the data flow should be passed to the token-
bucket queue 231, which is assigned to the virtual machine
230.

The above described embodiment typically applies when
a packets within the data flow are addressed to a destination
outside the physical node 400. If the packets within the data
flow are addressed to a destination internal to the physical
node 400, the routing component 410 may directly route the
packets to the targeted VM. By way of example, if the VM
230 is attempting to communicate packets to the VM 235,
the routing component 410 may convey the packets to the
VM 235 without passing through the token-bucket queue
231 assigned to the VM 230, thereby bypassing and pre-
cluding engagement of the token-bucket queue 231. This is
due to the lack of network-bandwidth consumption when
internally transmitting packets.

An alternative design is to locate the token-bucket queues
231,236, 271, and 276 above the routing component 410. As
such, the VM traffic will pass through one or more of the
token-bucket queues 231, 236, 271, and 276 first and then
the routing component 410. In that way, the token-bucket
queues can control the QoS of the traffic between the VMs
230, 235, 270, and 275 and in additional to the traffic that is
transmitted to an external client. But, the traffic targeting on
internal clients and on external clients will be treated simi-
larly and controlled by the same policy, as the destination is
not known when the packets pass through the token-bucket
queues 231, 236, 271, and 276. Or, even another token-
bucket queue (not shown) can be added at the inbound path
of each of the VMs 230, 235, 270, and 275. Along with the
original token-bucket queues token-bucket queues 231, 236,
271, and 276 above the NIC queue 310, they can control the
internal and external traffic of each VM separately by
applying different policies.

A scheduler 401 is provided on the physical node 400.
Generally, the scheduler 401 represents local VM manage-
ment software that dynamically allocates network band-
width to the VMs 230, 235, 270, and 275 based on a variety
of criteria. In embodiments, schedulers are instantiated on
physical nodes by way of a one-to-one relationship. In
embodiments, each node in a data center is provided with a
separate scheduler and these separate schedulers will work
independently. By way of example, two schedulers residing

US 9,471,348 B2

11

on two separate nodes will not coordinate with each other.
As mentioned above, the scheduler 401 maintains QoS
policies 211, 212, and 213 that are pushed down from a
fabric controller (not shown) that maintains prevailing cli-
ent, or subscriber, contracts containing the QoS policies 211,
212, and 213. In addition to the QoS policies 211, 212, and
213, other information (e.g., changes to QoS policies) may
migrate from the fabric controller to the scheduler 401 at
various periods of time (e.g., regular intervals or upon
receiving an update). In one instance, updates to the client
contracts may be made via a user-mode API that allows an
administrator to specify the QoS policies for the VMs 230,
235, 270, and 275. In another example, a value of relative
weighting or absolute bandwidth may be entered at the
user-mode API. The “relative weighting” and the “absolute
bandwidth” are variables used in independent, mutually-
exclusive schemes for allocating network bandwidth, which
are discussed in more detail below.

In operation, the scheduler 401 is capable of inspecting
the QoS policies 211, 212, and 213 written to one or more
clients’ contracts. As discussed above, the client contracts
govern allocation of network resources to the VMs 230, 235,
270, and 275. (Because VM 235 and VM 270 are compo-
nents of a common service application (see reference
numeral 290 of FIG. 2), the QoS policies 212 govern
distribution of network bandwidth to both the VMs 235 and
270.) Upon inspection of the QoS policies 211, 212, and 213,
the scheduler 401 may deposit tokens into the token-bucket
queues 231, 236, 271, and 276 based, in part, on the QoS
policies 211, 212, and 213. As used herein, the term “tokens”
is not meant to be restrictive, and can encompass any
representations of a portion of network bandwidth that is
allocated to one or more VMs.

The token-bucket queues 231, 236, 271, and 276 are
provided to impose a limit on a rate of data flowing from
their corresponding VMs 230, 235, 270, and 275, respec-
tively, as a function of the deposited tokens. The process of
imposing a limit of the data-flow rate will now be discussed
with reference to FIGS. 7 and 9. FIG. 9 shows a flow
diagram depicting an exemplary method 900 for limiting a
data-flow rate, while FIG. 7 shows a block diagram of a
token-bucket queue 710 for metering a data flow based on
tokens 732, 733, and 734 deposited therein. Initially, the
method 900 involves accepting a first deposit of tokens (e.g.,
tokens 732, 733, and 734) from the scheduler 401, as
indicated at block 910. Typically, the amount of tokens
provided within the first deposit is based on, at least one of,
the following: the tokens 732, 733, and 734 currently
maintained within a token-bucket queue 710, network band-
width allocated to the subject VM 230 associated with the
token-bucket queue 710, or network bandwidth allocated to
other VMs located on a common physical node 400 as the
subject VM 230.

The method 900 may further involve the steps of con-
suming the tokens 732, 733, and 734 according to a rate of
the data flow from the subject VM 230 (see block 920), and
dynamically metering the data-flow rate upon substantially
depleting the tokens 732, 733, and 734 (see block 930). In
instances of the present invention, the process of metering
may include either forwarding to the network interface
component 310 packets within the data flow that are
received prior to the tokens 732, 733, and 734 being sub-
stantially depleted from the token-bucket queue 710, as
indicated by block 940. Or, when the tokens 732, 733, and
734 have been substantially depleted from the token-bucket
queue 710, the subsequent packets within the data flow may
be enqueued, as indicated by block 950.

20

30

40

45

12

By way of example, the token-bucket queue 710 may
include a token component 730 that periodically receives an
amount of tokens (e.g., tokens 732, 733, and 734) deposited
thereto by the scheduler 401, and consumes them according
to a rate of the data flow from the VM 230. Specifically, as
shown in FIG. 7, when the VM 230 transmits the data flow
to the token-bucket queue 710, a prescribed amount of
tokens 732, 733, and 734 are deducted from the token
component 730 prior to releasing the packets 722, 723, and
724 from the queue component 720. The queue component
720 serves to internally enqueue packets that are received by
the token-bucket queue 710 when the token component 730
maintains an insufficient quantity of tokens for consumption.
As illustrated, packet 721 does not have a corresponding
token upon the packets 722, 723, and 724 consuming the
currently deposited packages 732, 733, and 734. Accord-
ingly, the queue component 720 will preclude the release of
the packet 721 until such time that sufficient tokens are
reloaded into the token component 730.

Upon the token component 730 of the token-bucket queue
710 accepting another deposit of tokens from the scheduler
401, the enqueued packet 721 may be released from the
queue component 720. In addition, the packet 721 may be
forwarded to the network interface component 310, assum-
ing that the tokens within the subsequent deposit are
adequate in amount to distribute the packet 721 held by the
token-bucket queue 710. This procedure is indicated within
the method 900 at block 960.

Turning to FIGS. 4-6, the schemes pertaining to absolute
bandwidth and relative weighting will now be discussed.
Initially, the “absolute-bandwidth scheme” for distributing
network resources involves allocating a particular amount of
tokens to a VM regardless of the network resources pres-
ently being utilized by other VMs occupying the same
physical node. For instance, if the physical node 400 has 10
MBs of available network resources, the VM 270 may be
allocated 4 MBs as an absolute value. As discussed above,
allocation of 4 MBs may involve depositing an amount of
tokens into the token-bucket queue 271 that is equivalent to
4 MBs. If one of the other VMs 230, 235, or 275 assumes
an idle state (ceasing to use network resources), the VM 270
will continue to be allocated the consistent 4 MBs of
network resources.

In other embodiments, the “relative-weighting scheme”
for distributing network resources involves allocating an
amount of tokens to a VM that is relative to the network
resources presently being utilized by other VMs occupying
the same physical node. For instance, referring to FIG. 5, if
the physical node 400 has 10 MBs of available network
resources, the VM 275 may be allocated 3 MBs as a relative
value, where the weighting is V3 of available bandwidth. As
shown, the remaining active VMs 230 and 235 are also
provided with a weighting of ¥4 (i.e., predefined ratio) of
available bandwidth. The allocation of the relative value of
3 MBs involves depositing an amount of tokens into the
token-bucket queues 231, 236, and 276 that is equivalent to
3 MBs for each.

As depicted, the VM 270 has assumed an idle state
(ceasing to use network resources). Thus, according to the
relative-weighting scheme, the network resources initially
allocated to the VM 270 are divided amongst the VMs 230,
235, and 237 in the active state. However, in embodiments,
the QoS policies may reserve a particular amount of band-
width for VMs within the idle state. This reserved bandwidth
cannot be allocated to VMs in the active state. In the
scenario depicted in FIG. 5, 1 MB is reserved for VM 270;
thus, the allocated network resources can only combine to be

US 9,471,348 B2

13
9 MB. It should be noted that, when setting the QoS policies,
the total reserve for all VMs on the physical node 400 cannot
be greater than the available bandwidth provisioned thereto.

When distributing the tokens, the scheduler 401 may be
periodically invoked (e.g., 20 ms), or dynamically triggered
upon the occurrence of an event, to reload the token-bucket
queues assigned to the VMs that remain in the active
condition. The scheduler 401 may detect those VMs that
have assumed the idle condition based on the unused tokens
residing in their assigned token-bucket queues. As such, the
scheduler 401 may abstain from reloading the token-bucket
queues of the VMs in the idle state, but may reserve tokens
based on their QoS policies, as discussed above.

Further, the scheduler 401 may cap the network resources,
or amount of tokens, that may be allocated to a particular
VM based on the instructions of the QoS policies. For
instance, with reference to FIG. 6, VM 235, although it is
granted a relative value of Y5 of available bandwidth, is
capped at 3 MB. Thus, in operation, the cap provides the
maximum amount of network resources a data flow can
consume, even when a portion of the available bandwidth
remains unallocated (e.g., due to idling VMs).

Turning now to FIG. 8 is a flow diagram is illustrated that
shows an exemplary method 800 for metering various data
flows of packets originating from a plurality of VMs instan-
tiated on the single physical node, in accordance with an
embodiment of the present invention. Initially, the method
800 includes the step of inspecting one or more QoS policies
written to a contract, as indicated at block 810. Typically, the
contract governs allocation of network resources to a client.
Next, tokens may be deposited into a token-bucket queue
based, in part, on the QoS policies of the client contract, as
indicated at block 820. As shown in FIGS. 4-6, the token-
bucket queue is assigned to the VM instantiated on the
physical node. The VM may be identified as having assumed
an active state based on a depletion of the deposited tokens
from the token-bucket queue, as indicated at block 830.
(When in the active state, a portion of the deposited tokens
are withdrawn from the token-bucket queue as a function of
a rate of the data flow from the VM.) The method 800 may
further include the step of reloading tokens into the token-
bucket queue as a function of the QoS policies, a portion of
the deposited tokens remaining in the token-bucket queue,
or other criteria, as indicated at block 840.

Embodiments of the present invention have been
described in relation to particular embodiments, which are
intended in all respects to be illustrative rather than restric-
tive. Alternative embodiments will become apparent to those
of ordinary skill in the art to which embodiments of the
present invention pertain without departing from its scope.

From the foregoing, it will be seen that this invention is
one well adapted to attain all the ends and objects set forth
above, together with other advantages which are obvious
and inherent to the system and method. It will be understood
that certain features and sub-combinations are of utility and
may be employed without reference to other features and
sub-combinations. This is contemplated by and is within the
scope of the claims.

What is claimed is:

1. One or more computer storage memory having com-
puter-executable instructions embodied thereon that, when
executed, perform a method for metering various data flows
of packets originating from a plurality of virtual machines
(VMs) instantiated on a single physical node, the method
comprising:

10

15

20

25

30

35

40

45

50

55

60

65

14

reading one or more first policies contained within a first
service agreement, wherein the contract first service
agreement governs allocation of network resources to a
first client;

allocating a first amount of network bandwidth to a first

VM, of the plurality of VMs, associated with the first
client based on the one or more first policies of the first
service agreement, wherein a size of the first amount of
network bandwidth is based, at least in part, upon a first
weighting associated with the first VM relative to, at
least, a second weighting associated with a second VM
of the plurality of VMs, and wherein the first weighting
and the second weighting are specified by the first
service agreement and a second service agreement,
respectively;

detecting that the first VM is in an active state based on

a depletion of the first amount of network bandwidth,
wherein the first amount of network bandwidth dimin-
ishes as a function of a rate of the data flow from the
first VM; and

allocating a second amount of network bandwidth to the

first VM based, at least in part, on the one or more first
policies and a remaining portion of the first amount of
network bandwidth.

2. The one or more computer-storage memory of claim 1,
the method further comprising:

reading one or more second policies contained within the

second service agreement, wherein the second service
agreement governs allocation of network resources to a
second client;

allocating a third amount of network bandwidth to the

second VM, of the plurality of VMs, associated with
the second client based on the one or more second
policies of the second service agreement;

detecting that the second VM is in an active state based on

a depletion of the third amount of network bandwidth,
wherein the third amount of network bandwidth dimin-
ishes as a function of a rate of the data flow from the
second VM, and

allocating a fourth amount of network bandwidth to the

second VM based, at least in part, on the one or more
second policies and a remaining portion of the third
amount of network bandwidth.

3. A computer system capable of metering a rate at which
packets from a virtual machine are injected into a network
utilizing one or more policies specified by tenants of a data
center, the computer system comprising a computer storage
medium having a plurality of computer software compo-
nents embodied thereon, the computer software components
comprising:

a first VM instantiated on a physical node, the first VM

associated with a first client;

a second VM instantiated on the physical node, the second

VM associated with a second client;

a first queue associated with the first VM

a second queue associated with the second VM; and

a scheduler that reads a first service agreement and a

second service agreement associated with the first
client and the second client, respectively, that allocates
a first amount of bandwidth to the first VM as a
function of one or more first policies contained within
the first service agreement, and that allocates a second
amount of bandwidth to the second VM as a function
of one or more second policies within the second
service agreement,

US 9,471,348 B2

15

wherein the first VM transmits a first data flow of packets
to the first queue prior to the packets of the first data
flow being released from the physical node,

wherein the second VM transmits a second data flow of

packets to the second queue prior to the packets of the
second data flow being released from the physical
node,
wherein, upon receiving the first data flow, the first queue
reduces the first amount of bandwidth by a prescribed
amount for each packet within the first data flow,

wherein, upon receiving the second data flow, the second
queue reduces the second amount of bandwidth by a
prescribed amount for each packet within the second
data flow.

4. The computer system of claim 3, further comprising:

a routing component that accesses a mapping between the

first VM and the first queue in response to detecting that
the first VM is attempting to transmit the first data flow
to an endpoint external to the physical node, and that
routes the first data flow to the first queue based on the
mapping, wherein the routing component routes the
first data flow from first VM to the second VM,
bypassing the first queue, in response to detecting that
the first VM is attempting to transmit the first data flow
directly to the second VM.

5. The computer system of claim 4, the computer software
components further comprising a network interface control-
ler (NIC) queue that meters the transmission of the packets
within the first data flow from the first queue and, in
conjunction, meters the transmission of the packets within
the second data flow from the second queue.

6. The computer system of claim 5, the computer software
components further comprising a network interface compo-
nent that receives the metered transmission of the packets
within the first data flow and the metered transmission of the
packets within the second data flow from the NIC queue and
releases from the physical node a controlled volume of
traffic that includes the packets within the first data flow and
the packets within the second data flow.

7. The computer system of claim 3, wherein the first
queue includes a queue component that internally enqueues
a subset of packets contained within the first data flow that
are received thereby in response to detecting that the first
amount of bandwidth is insufficient for consumption.

8. A computerized method for imposing a limit on a rate
of data flowing from a subject virtual machine (VM), the
method comprising:

accepting a current allocation of bandwidth from a sched-

uler, wherein an amount of bandwidth provided within
the current allocation is based at least in part on a

5

10

20

25

30

35

40

45

50

16

service agreement associated with the subject VM and
whether the subject VM is in an active state or an idle
state, and

wherein determining whether the subject VM is in an
active state is based on a depletion of a previous
allocation of bandwidth and determining whether the
subject VM is in an idle state is based on a lack of usage
of the previous allocation of bandwidth,

dynamically metering a data-flow rate of the subject VM,
wherein metering includes:

(a) forwarding, to a network interface component, packets
transmitted by the subject VM that are received prior to
the current allocation of bandwidth being substantially
depleted;

(b) enqueueing packets transmitted by the subject VM
that are received subsequent to the current allocation of
bandwidth being substantially depleted; and

(c) forwarding the enqueued packets to the network
interface component upon accepting another allocation
of bandwidth from the scheduler.

9. The computerized method of claim 8, wherein the
amount of bandwidth provided within the current allocation
is an absolute value specified by the service agreement.

10. The computerized method of claim 8, wherein the
amount of bandwidth provided within the current allocation
is based further upon a first weighting associated with the
subject VM relative to, at least, a second weighting associ-
ated with another VM, wherein the another VM is operating
on a same physical node as the subject VM.

11. The computerized method of claim 10, wherein the
first weighting is specified by the service agreement asso-
ciated with the subject VM and the second weighting is
specified by another service agreement associated with the
another VM.

12. The computerized method of claim 8, wherein the
amount of bandwidth provided within the current allocation
is based further upon an amount of network bandwidth
currently available to a physical node on which the subject
VM is operating.

13. The computerized method of claim 8, wherein the
current allocation is consumed as a function of the data flow
rate rate of the subject VM.

14. The computerized method of claim 8, wherein
dynamically metering the data-flow rate of the subject VM
further includes:

forwarding, to the network interface component, packets
transmitted by the subject VM that are being directly
transmitted to another VM operating on a same physi-
cal node as the subject VM, regardless of whether the
current allocation of bandwidth is substantially
depleted.

